We a Highly Accurate Solver for Stiff Ordinary Differential Equations
نویسندگان
چکیده
correction scheme for the corresponding Picard integral equation. Our solver relies on the assumption that the solution can be accurately represented by a combination of carefully selected complex exponentials. The solver’s accuracy and stability rely on the computation of highly accurate quadrature weights for the integration of the selected exponentials on equidistant nodes. We analyze our solver stability and accuracy regions, and demonstrate its fast convergence on stiff problems. The solver is combined with an adaptive step-size scheme employing interpolation formulas for the exponentially fitted solution.
منابع مشابه
A Highly Accurate Solver for Stiff Ordinary Differential Equations
We introduce a solver for stiff ordinary differential equations (ODEs) that is based on the deferred correction scheme for the corresponding Picard integral equation. Our solver relies on the assumption that the solution can be accurately represented by a combination of carefully selected complex exponentials. The solver’s accuracy and stability rely on the computation of highly accurate quadra...
متن کاملChebyshev Spectral Collocation Method for Computing Numerical Solution of Telegraph Equation
In this paper, the Chebyshev spectral collocation method(CSCM) for one-dimensional linear hyperbolic telegraph equation is presented. Chebyshev spectral collocation method have become very useful in providing highly accurate solutions to partial differential equations. A straightforward implementation of these methods involves the use of spectral differentiation matrices. Firstly, we transform ...
متن کاملOn second derivative 3-stage Hermite--Birkhoff--Obrechkoff methods for stiff ODEs: A-stable up to order 10 with variable stepsize
Variable-step (VS) second derivative $k$-step $3$-stage Hermite--Birkhoff--Obrechkoff (HBO) methods of order $p=(k+3)$, denoted by HBO$(p)$ are constructed as a combination of linear $k$-step methods of order $(p-2)$ and a second derivative two-step diagonally implicit $3$-stage Hermite--Birkhoff method of order 5 (DIHB5) for solving stiff ordinary differential equations. The main reason for co...
متن کاملA New Class of Highly Accurate Solvers for Ordinary Differential Equations
We introduce a new class of numerical schemes for the solution of the Cauchy problem for non-stiff ordinary differential equations (ODEs). Our algorithms are of the predictor-corrector type; they are obtained via the decomposition of the solutions of the ODEs into combinations of appropriately chosen exponentials, whereas the classical schemes are based on the approximation of solutions by poly...
متن کاملUniform Convergence of Interlaced Euler Method for Stiff Stochastic Differential Equations
In contrast to stiff deterministic systems of ordinary differential equations, in general, the implicit Euler method for stiff stochastic differential equations is not effective. This paper introduces a new numerical method for stiff differential equations which consists of interlacing large implicit Euler time steps with a sequence of small explicit Euler time steps. We emphasize that uniform ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010